Q
o

0 —

=)

(= ¥
\Lid

Access control for data integration in
presence of data dependencies

Mehdi Haddad, Mohand-Said Hacid

lll:
Elll
Ty

Outline

Introduction
Motivating example
Related work
Approach

— Detection phase
— (Re)configuration phase

Conclusion

Introduction

* Access control aims at preventing unauthorized users
from getting sensitive information.

* Access control protects data against unauthorized
disclosure via direct access.

* Beyond access control: the inference problem
— Preventing against indirect disclosure of data

— Inferring sensitive information from non sensitive
ones by resorting to semantic constraints

Context

Data Sources Mediator Data Consumers

Business Intelligence

Data Warehousing
System

Privacy Policy
Enforcement Point

|N 8unioday

* Many data sources.
* Each one with its own data schema.
* Each source has its own privacy policies defined on its own schema.

* Global As View (GAV) integration approach.

The inference problem [1]

* The inference problem is the ability to deduce
sensitive information from non sensitive one.

e Two methods to make an inference :

— Obtaining information about individuals from
information about a population (e.g. statistics).

— Combining non sensitive information with
semantic constraints (e.g. metadata) to obtain
sensitive information.

[1] Csilla Farkas, Sushil Jajodia: The Inference Problem: A Survey.
SIGKDD Explorations 4(2): 6-11 (2002)

Access control of association

e Access to a set of attributes simultaneously is more
sensitive than accessing each attribute individually.

 Example: consider the attributes SSN and Disease

— The individual access to SSN or Disease could be allowed,
whereas access to both attributes simultaneously is
denied.

— The association patient-disease is sensitive.

Motivating example

Sources

S1(SSN, Diagnosis, Doctor).
S2(SSN, AdmissionDate).
S3(SSN, Service).

Authorization policy at S1
Nurses are prohibited from accessing the association of SSN and Diagnosis.

Authorization rule
(SSN, Diagnosis) :- S1(SSN, Diagnosis, Doctor), role = nurse.

Motivating example

Mediator

M(SSN, Diagnosis, Doctor, AdmissionDate, Service) :-
S1(SSN, Diagnosis, Doctor) , S2(SSN, AdmissionDate),
S3(SSN, Service).

Functional dependencies
FD1 : AdmissionDate, Service — SSN
FD2 : AdmissionDate, Doctor— Diagnosis

Authorization policy at the mediator (Propagation)
Nurses are prohibited from accessing the association of SSN and Diagnosis.
Authorization rule
(SSN, Diagnosis) :- M(SSN, Diagnosis, Doctor, AdmissionDate, Service),
role = nurse.

Motivating example

* A malicious user could execute the following queries :
Q1 (SSN, AdmissionDate, Service).
Q2(Diagnosis, AdmissionDate ,Service).

* Combining the results of the two queries by a join and taking
advantage of FD1, a malicious user will obtain SSN and diagnosis,
thus will violate the authorization policy

* Q3(SSN, Diagnosis) :- Q1 (SSN, AdmissionDate, Service),
Q2(Diagnosis, AdmissionDate ,Service).

Motivating example

 Theissue arises from the following

— New semantic constraints appear at the mediator
(e.g., FD1).

— No source could have considered this new semantic
constraints while defining its policy.

* Propagating and combining the sources’ policies is not
sufficient.

= The need for a methodology that considers both
combination and new semantic constraints that appear
at the mediator.

10

Goal

* Help/advise the administrator defining the
mediator’s policy such that:

— Each source policy has to be preserved.
— Prevent against illegal accesses

* Direct access : ask for sensitive information.
* |Indirect access : infer sensitive information.

— Maximize the availability at the mediator level.

State of the art

* To deal with the inference problem two main
approaches have been proposed

— At the design time

* Modifies the schema or the policy in such a way that no inference
could appear.

— At the execution time

» Keeps track of the previous queries and use them to make a
decision about the current query.

State of the art

* At the design time [2]
— Considers functional dependencies.

— Assumes that if X — Y then Y is “computable”
from X.

— Propagates the constraints of Y to X.
— Does not consider association of information.

[2] Tzong-An Su, Gultekin Ozsoyoglu: Data Dependencies and Inference Control
in Multilevel Relational Database Systems. IEEE Symposium on Security and
Privacy 1987: 202-211

State of the art

e At the execution time [3]

— Considers past queries to make a decision about
the current query.

— Does not consider functional dependencies.
— Does not consider access to associations.

[3] MB Thuraisingham. Security checking in relational database management systems
augmented with inference engines. Computers & Security, 6(6):479-492, 1987

Contribution

Assumptions

Relational model & conjunctive queries.
Global As View (GAV) integration approach

— Each virtual relation of the mediator is constructed by a conjunctive
query over the sources’ relations.

— e.g., M (SSN, Diagnosis, Doctor, AdmissionDate, Service) :-
S1(SSN, Diagnosis, Doctor) , S2(SSN, AdmissionDate),

S3(SSN, Service).

Authorization rules expressing prohibition
— e.g., (SSN, Diagnosis) :- S1(SSN, Diagnosis, Doctor), role = nurse.

Semantic constraints : functional dependencies.

Functional
dependencies

Mediator

policy

Mediator
schema

Methodology

Detection phase (Re)configuration phase
'----------------1 I I I D D D D D B
! ! I |
| | | . S
0 0 [Policy modification :
! ! | P=PU{DQY,pQS) |
I {a1,a3 a4 | I :
I {a, a5y | [1
[4 {a2,a3,a5} | [I
| {Q2,04} | |
| {Q3,Q4,Q5} | | I
i I I Query tracking |

|
| | |
I i 1 {1, Q5} 1
0 i I {@2, a3, a5} [
J Transition graph Transactions | | {Q2, 4} I
| construction generation I | I

17

Methodology

e Detection phase

— Transition graph construction.

— Violating transactions generation.
* (Re)configuration phase

— Solution 1 : Policy revision.

— Solution 2 : Query tracking.

Detection phase : problem definition

* |nputs
— Sources’ policies propagated to the mediator.

— Functional dependencies that hold at the
mediator level.

* Output

— The set of all the transactions that could induce
privacy violations.

Graph construction

Functional dependencies
FD1 : AdmissionDate, Service — SSN
FD2 : AdmissionDate, Doctor — Diagnosis

(SSN, Diagnosis)

Graph construction

Functional dependencies
FD1 : AdmissionDate, Service — SSN
FD2 : AdmissionDate, Doctor — Diagnosis

(SSN, Diagnosis)
FD1

Q1 (AdmissionDate, Service, Diagnosis)

21

Graph construction

Functional dependencies
FD1 : AdmissionDate, Service — SSN
FD2 : AdmissionDate, Doctor — Diagnosis

(SSN, Diagnosis)

FD1

Q1(AdmissionDate, Service, Diagnosis)

D2

Q2 (SSN, AdmissionDate, Doctor)

22

Graph construction

Functional dependencies
FD1 : AdmissionDate, Service — SSN
FD2 : AdmissionDate, Doctor — Diagnosis

(SSN, Diagnosis)

FD1 D2
Q1 (AdmissionDate, Service, Diagnosis) Q2(SSN, AdmissionDate, Doctor)
FD2

Q3 (AdmissionDate, Service, Doctor)

23

Graph construction

Functional dependencies
FD1 : AdmissionDate, Service — SSN
FD2 : AdmissionDate, Doctor — Diagnosis

(SSN, Diagnosis)

FD1 D2
Q1(AdmissionDate, Service, Diagnosis) Q2(SSN, AdmissionDate, Doctor)
FD2 FD1

Q3(AdmissionDate, Service, Doctor)

24

Upper bound & termination

* Assumption
— WLOG, each FD has a RHS of one attribute.
n: the number of attributes of the policy.

m : the number of functional dependencies in FD*
that have an attribute of the policy as RHS.

The upper bound of the order (humber of nodes) of
the graphis:
G)
n

= The graph construction algorithm terminates.

Generation of violating transactions (1/4)

(SSN, Diagnosis)

FD1 D2
Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)
FD2 FD1

Q3 (AdmissionDate, Service, Doctor)

How to generate the violating transactions?
* Each path between the initial node and a node Qi represents
a transaction.
* A transaction is composed of all FDs on the path and the
query of the node Q,.

26

Generation of violating transactions (2/4)

(SSN, Diagnosis)
Correspond to the query
FDQ1: (AdmissionDate, Service, SSN)
FD1 D2

Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)

FD2 FD1

Q3 (AdmissionDate, Service, Doctor)

Transactions
T1 ={FDY, Q1}

27

Generation of violating transactions (3/4)

(SSN, Diagnosis)

FD1 D2
Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)
FD2 FD1

Q3 (AdmissionDate, Service, Doctor)

Transactions
T1={FDQ1, Q1}
T2 ={FD92, Q2}

28

Generation of violating transactions (4/4)

(SSN, Diagnosis)

FD1 D2
Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)
FD2 FD1

Q3 (AdmissionDate, Service, Doctor)

Transactions

T1 ={FD?1, Q1}

T2 ={FD?2, Q2}

T3 ={FD?1, FD2, Q3} .

(Re)configuration phase

* How to use these violating transactions?

— At the design time : Policy revision
* Add a new set of authorization rules.
* No transaction could be completed.

— At the execution time : Query tracking
» Keep track of the user’s queries.

* Avoid the execution of the queries of a single
transaction.

Solution 1 : Policy revision

* In the previous phase we have generated a set of
transactions.

T1={Q1, Q2, Q8}

T2={Q8, Q4} _
13105, O | > Q={Q3, a6}

e If v&‘&%%ﬂﬁ“ew authorization rules such that for any Ti
at least one Qj is denied, then the policy will be
preserved.

* Query cancellation problem : find the minimum set
of Qj.

Query cancellation : problem
definition

* Input : A set of violating transactions

T1={Q!, Q%, ... Q%)

T2={Q2,, Q%, ... Q2,,}

¥}1={in, Q,,..Q" }
 Qutput : a set Q of queries such that:

-Vi,TiNQ=#0®

— Qisminimal (A Q' stVi, TiN Q" #® and
|Q’[<[Ql)

Complexity study

* Query cancelation problem is NP-complete.

— Proof by reduction from the minimum dominating set
problem.

 The associated optimization problem is NP-hard.

= These results induce the use of exponential
algorithm to obtain an exact solution.

Policy revision

* Find the minimum set of queries to be denied
— Add a new rule for each query.

— Ensure, at the design time, that no violating
transaction could be completed.

* Finding the minimum set of queries increases the
availability at the mediator level.

Solution 2 : Query tracking

* History based solution

— Consider past queries to take a decision about the
current query.

* Problem definition
— Input
* Past queries.
* A set of violating transactions.
* Current query.
— Output

e Decision about the current query (accept or deny).

Example

e Let T ={Q1, Q2, Q3} be a transaction.

* Let Q'={QY,, QY,, QY3, Q",} be a sequence of
user’s queries.

Relationship between Qi and Q"
Qlc QY
Q2 < QY
Q3 < QY,

36

Example

Relationship between Qi and Q"

Qlcay
Q2 cay,
Q3cay,

User’s queries Transaction m

QY T={Q1, Q2, Q3} QY, is accepted

37

Example

Relationship between Qi and Q"

QlcaQy
Qcay
Q3caQy,

User’s queries Transaction m

QY T={Q1, Q2, Q3} QY, is accepted
QY, T={Q1, Q2, Q3} Q, is accepted

38

Example

Relationship between Qi and Q"

QlcaQy
Qcay
Q3caQy,

User’s queries Transaction m

QY T={Q1, Q2, Q3} QY, is accepted
QY, T={Q1, Q2, Q3} Q, is accepted
QY T={Q1, Q2, Q3} Q"; is accepted

39

Example

Relationship between Qi and Q"

Qlcay
Q2cay
Q3 cQy,

User’s queries Transaction m

Q,
QY
Qv
Q’,

T={Q1, Q2, Q3}
T={Q1, Q2, Q3}
T={Q1, Q2, Q3}
T={Q1, Q2, Q3}

QY, is accepted
Q, is accepted
QY is accepted

QY, is denied

40

Labeling method

* A query Qi could be simulated by a set of
user’s queries.

* |f we modify the previous example as follows:

Relationship between Qi and Q"
Ql<c QY
Q2 < QY
Q3 Q¥ x QY, ™ QY
Q3 cQY,

41

Labeling method

Qlcay
Qcay

Q3 €QY, 4 QY b4 QY
Q3 cQy,

User’s queries Transaction m

QY T={Q1, Q2, Q3} QY, is accepted

42

Labeling method

Relationship between Qi and Q"
Ql < QY
Q2 < QY,
Q3 cQY; @ QY, ™ QY
Q3 € QY

User’s queries Transaction m

QY T={Q1, Q2, Q3} QY, is accepted
QY, T={Q1, Q2, Q3} QY, is accepted

43

Labeling method

Relationship between Qi and Q"

Qlc QY
Q2 < QY,
Q3 €QY; X Q", x QY
Q3 cQY,
User'squeries | Transaction | valuation
QY T={Q1, Q2, Q3} QY, is accepted
QY, T={Q1, Q2, Q3} QY, is accepted

QY T={Q1, Q2, Q3} Q; is denied

44

Labeling method

Relationship between Qi and Q"
Ql < QY
Q2 < QY,
Q3 cQY; @ QY, ™ QY
Q3 € QY

User’s queries Transaction m

QY T={Q1, Q2, Q3} QY, is accepted
QY, T={Q1, Q2, Q3} QY, is accepted
QY T={Q1, Q2, Q3} Q; is denied

QY, T={Q1, Q2, Q3} QY is denied

45

Query tracking

Importance of the labeling method.

Consider combination of user’s queries to simulate a
query of a transaction.

We have defined a specific operator that considers
these combination while building the user history.

Comparison of the two solutions

* Policy revision
— Advantage : all the processing is achieved at design time.
— Drawback : could be too restrictive.

* Query tracking

— Advantage : maximizes the availability at the mediator
level.

— Drawback : maintaining the history of all users.

Experiments

 The proposed approach has been
implemented and some experiments
conducted:

— We generated a mediator schema.
— We generated a set of authorization rules.
— We generated a set of functional dependencies.

Experiments

8000+

Number of nodes
N
(@]
(@]
<

) . ‘O__.O-"O'—O
- —o- - 13 (attributes at mediator schema) o0~
—=— 12 youd
--¥-- 11 A
—-—--10 /,o
-} == 9 3
. 5 }j/
7/
@]
7/
- -
/d Kﬁ'_ﬁ-——ﬂ"—kﬁ_—
V-4 LA
ol //_\./'y
s A
,O/A/e_\'
e
,O’i’A s 24 S e A
gt d ,,..v-'""' _________________ _
%A-”--'" ST - _ -
< ¥ . =-0-o0 o O O-0-0 -0 - 4=-4-0 o - 1+
- BRI RIS S T S o s 3 - 5 3= 3 3= 3 3= K K= X X X X -
| |

6 7 8 9 101112131415161718 192021 2223 24 25 26 27 28
Number of Functional Dependencies

Experiments

- /l
D 2000j /
'8] /
O = //
o } /
4b)
» 15004
7 /
L -
S i yd
O 1000j /
~
—-— - //
= y
O 500+ g
k= i e
— . - -
0- _______ —_—
1 T T T 1 T T 1 1 1 1 1 1 1 1 1 T 1 1 1 T 1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Number of nodes

Conclusion

 We have proposed a methodology that helps
the administrator to define the mediator

policy.

 We studied different theoretical aspects of the
approach

— Upper bound of the constructed graph.

— NP-completness of the query cancellation
problem.

* We conducted some experiments on synthetic

Perspectives

e Other kinds of dependencies

— Inclusion dependencies.

— Interaction between FDs and IDs.

e Other kinds of data integration (e.g., LAV).

 Mediator’s policy already defined

— Consistency between the defined policy and the
generated policy.

Thank you for your attention

